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Rapid decoherence in integrable systems: A border effect
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We show that rapid decoherence, usually associated with chaotic dynamics, is not necessarily a hallmark of
nonintegrability: border effects in integrable systems may produce similarly drastic decoherence rates. These
can be found when the subsystem under observation possesses an energy limitation as, e.g., in theN-atom
Jaynes-Cummings model. We show for this model that special initial coherent wave packets exhibit entropy
production rates strikingly similar to the chaotic case. Also, a~de!localization phenomenon is found to be a
function of the proximity to the phase-space border.@S1063-651X~99!01611-6#

PACS number~s!: 05.45.Mt, 32.80.Qk
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The quantum entanglement process, decoherence, an
quantum↔ classical transition@1# have recently attracted
much attention from physicists, both theoretical and exp
mental@2#. Creating entangled quantum states in the labo
tory is now possible in ion trap experiments@3# and also with
atoms in high-Q cavities@4#. Both of them realize a simple
situation in which a two-level atom is coupled to a quantiz
harmonic oscillator by means of the Jaynes-Cummi
model~JCM! @5#. This simple model has a long and freque
history as a convenient laboratory for testing theoretical p
dictions@6#, being expected nowadays to serve also in pr
tical implementations. The physics of this kind of syste
where two or more atomic levels interact with a single-mo
electromagnetic field, is usually explored by means of qu
tities such as the population inversion and the mean num
of photons. These quantities revealed, among other phen
ena, the existence of collapse and revival regions in
curves of population inversion@6,7#. One could then infer
that the field and atom lose their identity in the collap
region, and most closely return to their initial states dur
the revival.

However, if one is concerned with the entanglement
the atomic and field subsystems, the population inversion
be a misleading quantity, particularly with respect to the p
rity of the quantum state. In fact, the works of Phoenix a
Knight @8# and that of Gea-Banacloche@9# have shown that
this system may greatly recover its purity during the ve
collapse interval, at half the revival time. In these pape
instead of population inversions, reduced density opera
were used in calculating either the system’s entropy or ide
potency defect~linear entropy!. Here we are interested in th
decoherence process of systems constituted by subsys
with dissimilar Hilbert spaces. To this end, we take t
N-atom JCM, whereN two-level atoms interact with a
single-mode field and, in view of the results just cited,
adopt the idempotency defect as a measure of the enta
ment between the atomic subsystem and the field one.
note incidentally that, compared with the entropy, the cal
lations of the linear entropy are easier and convey essent
the same information.

From another point of view, we want to explore the qua
tum ↔ classical connection and possible differences in
PRE 601063-651X/99/60~5!/5407~5!/$15.00
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decoherence process in integrable and nonintegrable s
tions. For these reasons, we choose conditions which ca
mimicked over the classical phase space. At this point a
tinction is noteworthy between the here-called ‘‘quasiclas
cal’’ treatment of the JCM@10#—where one treats the atomi
part quantum mechanically and the field one classically
and our ‘‘semiclassical’’ treatment—where the classical lim
is taken for both atomic and field quantum subsystems. In
latter context, theoretical investigations using several mod
suggest that systems which are chaotic in the classical l
decohere rapidly@11,12#. This is also true for theN-atom
JCM @13# in its nonintegrable version@14#. Moreover, for the
specific case of Ref.@14#, a connection between the entangl
ment process and the associated classical structures has
investigated. One of the main results of that investigation
the presence of some sensitivity to where in the class
phase space one places the center of the initial quantum
herent wave packets. It is now a well accepted fact that
decoherence rate is larger for chaotic systems than for i
grable ones. We argue here that this belief that the fas
decoherence is to be attributed to chaotic regimes can
misleading in some cases. Such a phenomenon is particu
conspicuous when a~smaller! subsystem under observatio
has a finite Hilbert space, a~larger! subsystem coupled to i
does not have such a restriction, and the global system
prepared in a state with mean energy larger than the am
allowed for the smaller subsystem. A phase-space desc
tion then reveals the presence of a ‘‘border’’ associated w
the degrees of freedom of the smaller subsystem. In su
situation, initial conditions that drive the classical motion
the proximities of this border lead to decoherence rates s
ingly similar to those of typical chaotic situations, even if th
system is completely integrable. Moreover, another inter
ing phenomenon related to this is shown to occur: the pr
imity of the border tends to delocalize the wave pack
whereas for times when the dynamical evolution dictate
departure from the border there is a clear tendency to r
calize the wave packet in the sense that it recovers quan
coherence. These results are shown by comparing the cl
cal and quantum description of theN-atom Jaynes-
Cummings model, whose experimental realization is feas
in cavity QED setups. We present arguments according
5407 © 1999 The American Physical Society
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which the experimental realization of this model would p
mit the effects here presented to be observable withN'20
atoms, provided they could be prepared in a coherent s
@15#.

A measure of the entanglement between two subsyst
is given by the linear entropy or idempotency defect~or de-
gree of purity! of the subsystem of interest, say subsystema
@16,17#. This can be calculated after evaluating the redu
density operator for the corresponding subsystem

ra~ t !5Trf$uc~ t !&^c~ t !u%, ~1!

and then tracing over its variables to get

d~ t !512Tra$ra
2~ t !%. ~2!

This quantity describes the degree of purity of the subsys
in a scale from zero~pure state! to one~statistical mixture!.
In these equationsuc(t)& is the quantum state of the fu
system, which in the present work is composed of
N-atom~spin! degree of freedom denoted by the indexa, and
of the field ~bosonic! degree of freedom denoted byf.

The linear entropyd(t) will be calculated as a function o
time for some initial conditions to be chosen from the cor
sponding classical phase space: namely, a minimum un
tainty wave packet in spin~atom! and oscillator~field! bases
is constructed as

uc~0!&5uw& ^ uv&[uwv&, ~3!

whereuw& stands for an SU(2) coherent state anduv& for a
bosonic one@18#,

uw&5~11ww̄!2JewJ1uJ,2J&, ~4!

uv&5e2vv̄/2evb1
u0& ~5!

with

w5
pa1 iqa

A4J2~pa
21qa

2!
, ~6!

v5
1

A2
~pf1 iq f !, ~7!

uJ,2J& being the state with spinJ andJz52J,u0& being the
harmonic oscillator ground state, andpa ,qa ,pf ,qf describ-
ing the phase space as will be seen below. The full ini
stateuc(0)& is evolved by the quantum Hamiltonian

H5\v0b1b1«Jz1
G

A2J
~bJ11b1J2!

1
G8

A2J
~b1J11bJ2!, ~8!
-
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where the first term corresponds to the energy of the f
single-mode quantized field with frequencyv0, and the sec-
ond term corresponds to the energy of theN52J atoms with
energy separation\« (\51 hereafter!. The last two terms
correspond to the interaction energy between the atomic
tem and the single-mode field. The second of these term
the one responsible for the nonintegrability of the mod
here we shall set it equal to zero and work within the s
called rotating-wave approximation.

The classical Hamiltonian corresponding to Eq.~8! can be
obtained by a standard procedure using the coherent s
~4! and~5! as^wvuHuwv& @19#, and in this case it results in
a nonlinearly coupled two degrees of freedom function

H~qa ,pa ,qf ,pf !

5
v0

2
~pf

21qf
2!1

«

2
~pa

21qa
2!

2«J1
A4J2~pa

21qa
2!

A4J
~G1papf1G2qaqf !, ~9!

whereG65G6G8. The integrable situation corresponds
G850.

A Poincarésection of the integrable case is shown in F
1 for the valueJ5N/2521/2, which corresponds to a sem
classical regime@20#. Note that there exists a border asso
ated with the spin degree of freedom, so the initial state
be prepared with total energy sufficiently high as to allow t
classical variablesqa andpa to reach this border of the phas
space. Note also the presence of a separatrix of motion a
line pa50. The filled symbols indicated in the Poincare´ sec-
tion represent the centers of the quantum coherent st
evolved by Hamiltonian~8!. We have chosen one of th
initial conditions~i.c.! very close to the separatrix of motion
whereas the other two not so close to it. The idempote

FIG. 1. Poincare´ section for the spin degree of freedom~section
with qf50.0 andpf.0.0) in the resonant case («5v051), energy
E519.83, J521/2 in the integrable case (G50.5 andG850.0).
The marks represent the various choices for the centers of the
herent states: circle for i.c. (qa50.01, pa50.01, qf50.0, p f
57.7834), triangle for (qa50.5, pa521.0, qf50.0, p f
58.2160), and square for (qa521.0, pa51.0, qf50.0, p f
57.1865).
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defectd(t) for these i.c.’s is shown in Fig. 2~a! as well as
one dashed curve for thenonintegrablecase (G50.5,G8
50.2) with the i.c. centered in a chaotic region. Also sho
in Fig. 2~b! are the corresponding increase rates ford(t).

The idempotency defect for the integrable case with
i.c. closest to the separatrix of motion~thick solid curve! can
be seen to increase as fast as the dashed curve, when r
ing the value it takes at long times. The other two ca
~dotted and thin solid curves! also show quite a fast increas
at short times. It is rather unexpected that the short t
behavior of the thick solid curve is amazingly similar to t
dashed one which represents the evolution of a wave pa
centered at a chaotic region. In order to understand this
sult, we study the classical counterpart of this effect. In F
3 we plot the classical time evolution of ensembles of traj
tories centered at the i.c.’s shown in Fig. 1, the time evo
tion of the patch being plotted at time intervalsDt. Clearly
as the classical patch approaches the border of the spin p
space, it becomes very much spread over a large portio
phase space, which quantum mechanically corresponds
large coherence-loss rate. When finally the border is reac
as is the case in Fig. 3~a!, the patch is spread all over th
circle representing the border of the spin phase space, w

FIG. 2. ~a! Linear entropyd(t) as a function of time for the
same parameters as in Fig. 1. The letters correspond to the
chosen in the Poincare´ section: the case~A! is for the circle,~B! is
for the triangle, and~C! is for the square. The dashed curve rep
sents the nonintegrable case (G50.5 andG850.2) with the same
energy and i.c. (qa50.5,pa521.0,qf50.0,p f58.4280); ~b! rate
of change ofd(t) as a function of time for the cases shown in~a!.
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we have called the ‘‘border effect’’ in its classical versio
As the figures show, the closer the separatrix is to the ini
condition, the more pronounced is the effect. The initia
coherent quantum wave packet whose center coincides
the initial classical patch can be imagined to follow rough
such a motion and lose coherence rapidly during this spre
ing on the border. In fact, the centers of Husimi distributio
for these wave packets evolve in essentially the same ma
as the classical patch@21#. Moreover, calculating the
Lyapunov exponent for these regular trajectories confir
that near the separatrix, where exponential separation is
ally experienced, they are positive and finite. This ‘‘bord
effect’’ thus suggests that it is possible to exist in complet
integrable systems decoherence processes which can b
fast as the chaotic ones. It suggests on the other hand tha
previous result@14# showing that chaotic initial conditions
lead to faster decoherence could possibly be seen, in a
scale of large decoherence, as chaos acting in the sen
driving the motion always to the proximities of the bord
whereas not all regular initial conditions do so~some of them
remain far from the border!. Detailed investigation in these
directions will be presented elsewhere@22#.

Also remarkable asre the oscillations ind(t) which, as we
comment on below, are not related to the fast Rabi osci

.’s

-

FIG. 3. Projection on the plane (qa ,pa) of the time evolution
for an ensemble of i.c.’s:~a! ensemble centered in the circle in Fig
1, with Dt50.3; ~b! ensemble centered in the triangle, withDt
50.2. The line follows the time evolution of the initial center of th
ensemble. Also shown is the border of phase space for the
degree of freedom.
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tions. Note that large oscillations are accomplished bef
the plateau is reached in cases (B) and (C) indicating the
presence of a mechanism through which purity is partia
recovered in time. One can compare the time values in
cated in Fig. 3~a! with the corresponding increase rate
d(t) in Fig. 2~b! and see that the maximum rate occurs wh
the classical packet is close to the border. The classical p
is maximally delocalized by this time (t'3.0). However, a
few Dt ’s later the patch regains much of its original loca
ization. This delocalization↔ localization phenomenon ha
a quantum-mechanical counterpart, namely the oscillatio
the linear entropyd(t) occurs at the same time as the cla
sical patch leaves the border region and tends to recove
initial ~localized! shape. Indeed, following the dotted curv
in Fig. 2~b! and its corresponding classical patch evolution
Fig. 3~b!, one can see the patch approaching the border o
spin phase space aroundt'2.6, where the maximum deco
herence rate is reached. Later on, the patch deviates to
central region and aroundt'5.8 the decoherence rate in Fi
2~b! is at a minimum. The same pattern is found in conn
tion with the case (C) shown in Fig. 2~a!. This localization
↔ delocalization effect is more marked for initial condition
slightly off the separatrix because in these cases the osc
tions in d(t) have larger amplitudes, and in all cases exa
ined they are related to this phenomenon, both qualitativ
as well as quantitatively.

Before concluding, we comment on the absences of a
vival region for the Rabi oscillations, and of the recoveri
of purity by the quantum state at half the revival time,
situation seen in our figures as a plateau attained by the
ear entropyd(t). As shown by Knight and Shore@23# and by
Kudryavtsevet al. @24#, the possibility of recovering purity
at long times is smaller the greater the numberN of atoms is,
being also highly sensitive to initial conditions. Recoveri
of purity at the collapse interval is usually seen for syste
with a small number of atoms~or atomic levels! and for
special initial conditions~the atomic part is usually chose
either as the most excited atomic level or as the ground o!.
As an example, for one two-level atom in the cavity (N
52J51), the system shows itself at half the revival time
a Schro¨dinger-cat state. Later on, at the revival interval
time, one sees the usual rapid Rabi oscillations. In our c
we haveJ521/2 and the initial atomic state is also in
coherent state, with occupation distributions for all theJ
11 atomic levels. This choice for the initial condition
guided by the classical phase space—from which we mi
the initial quantum state—and also by the fixed energy va
which links atomic initial conditions (qa ,pa) and field ones
(qf ,pf). Starting in this situation, at sufficiently long time
the atomic state tends to be uniformly distributed over
2J11 levels and Tra$ra

2%51/(2J11), indicating the plateau
seen in the figures. On the other hand, if we increase
value ofN, starting always with the atom in the most excit
level, we see that the Rabi oscillations are still present
with smaller amplitudes. Thus we conclude that, besides
high value ofN, the nonappearance in our cases of such R
oscillations has to do with our atomic initial conditions bei
also coherent@25#. This situation is consistent with one’
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expectation that Rabi oscillations should not be seen in
classical limit. All this summed up prevents the appeara
here of any catlike behavior with appreciable recovering
purity at long times, but a final plateau instead.

In conclusion, we have found a new effect on the de
herence of a subsystem with finite Hilbert space coupled
subsystem with infinite Hilbert space, when the mean ene
of the initial quantum wave packet is much larger than
energy allowed for the ‘‘small’’ subsystem. In this case, t
energy border has a striking effect on the linear entro
especially in the short time behavior, when the border
‘‘felt’’ in its time evolution. For energies such that the bord
is less effective, the Lyapunov exponents go to zero as t
should. The quantum counterpart of this situation is seen
Fig. 4, where we fix the center of the quantum initial wa
packet to be close to the separatrix~therefore testing the
border for high enough energies! and vary the energy in suc
a way that the border is more~or less! effective. Note that for
the highest energy we have the largest increase ind(t) for
short times and this effect is attenuated as the energy
comes smaller. Another interesting feature found in
present investigation is the localization↔ delocalization
phenomenon related to the proximity of the border follow
by a relocalization which reflects a quantum coherence
covery.
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FIG. 4. Linear entropyd(t) as a function of time for the sam
parameters as in Fig. 1 and various values of energy: thick s
curve forE519.83, dotted curve forE58.5, and thin solid curve
for E54.5.
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